石家庄稀土镁合金价格行情_石家庄稀土镁合金价格行情最新
1.稀土元素在铸造镁合金中有什么作用
2.稀土镁合金的常用元素
3.包芯线属于稀土镁合金里的哪一类
4.稀土在镁及镁合金中的应用
稀土元素在铸造镁合金中有什么作用
找铸件订单,学铸造技术,请登录:铸件订单网
稀土对有色金属材料的有益影响在镁合金中是最为明显的。不仅构成了Mg-RE合金系,而且对Mg-Al,Mg-Zn等合金系均有着十分显着的影响。其主要作用有如下几个方面:
1、细化晶粒
适当含量的稀土,可以细化镁及镁合金晶粒。首先是细化铸造组织的晶粒。稀土元素细化镁合金铸造组织的机理不是异质形核的作用。稀土元素对镁及镁合金晶粒细化的机理是结晶前沿过冷度的增大。其次是在热加工过程和退火过程中阻碍再结晶和晶粒长大。
2、净化熔体
稀土元素与痒的亲和力大于镁与氧的亲和力,因此可与熔体中的Mgo和其他氧化物反应生成稀土氧化物而沉淀,从而去除氧化夹杂。与熔体中的氢和水汽发生反应,生成氰化物或稀土氧化物,达到去氧的目的。同时还可以增加熔体的流动性和减少铸件的缩松,提高致密性。
3、提高室温合金强度
多数稀土元素在镁中有较大的固溶度,并且随温度降低固溶度有明显变化,因此稀土元素除固溶强化外,还是镁合金有效的时效强化元素,一些稀土化合物还有弥散强化作用。
4、提高合金力学性能的热稳定性
稀土元素是提高镁合金耐热的最有效的合金化元素,能显着的提高Mg合金高温强度和高温蠕变抗力,其原因是多方面的:稀土在镁中扩散系数小,可减慢再结晶过程和提高再结晶温度,增加时效效果和脱溶相的热稳定性,高熔点的稀土化合物钉扎晶界,阻碍位错运动,提高高温蠕变抗力。
5、提高合金耐蚀性能
由于净化了熔体,减小杂质铁等的有害影响,从而提高耐蚀性能
稀土镁合金的常用元素
Y加入到镁合金中可明显细化组织的晶粒大小。白云等[1]研究了Y对铸造镁合金Mg-6Zn-3Cu-0.6Zr的微观组织和力学性能的影响,结果表明:由于Y的加入,试样组织的平均晶粒尺寸有效减小(由 57 μm 降为 39 μm)。
Y可以提高镁合金的耐腐蚀性能。齐伟光等[2] 研究了Y对AZ91D镁合金微观组织和腐蚀性能影响,结果表明:结果表明:AZ91D镁合金加入Y后,显微组织主要由α-Mg基体相、B相Mg17Al12、Al2Y相和Al6Mn6Y相组成。加入1%Y能显著降低合金的腐蚀速度,提高合金的平衡电位和腐蚀电位,降低腐蚀电流。
Y可以明显提高镁合金的力学性能。李建平等[3]在高强韧铸造镁合金显微组织和性能的研究中,研究了不同稀土Y含量(O%、1.2%、2.2%、3.2%和4.2wt%)对GZKl000镁合金的显微组织及其室温拉伸性能和物理性能的影响在GZKl000合金中加入Y元素(0~4.2%wt)可以提高铸卷GZKl000的抗拉强度,其延伸率也相应有所提高,当Y含量为3.2%wt时,其抗拉强度和延伸率都达到最大,抗拉强度达到237MPa,延伸率达到7.2%;经过固溶时效处理后合金的显微组织由经过固溶时效处理后合金的显微组织由α-Mg、Mg5Gd和Mg24Y5组成α-Mg、Mg5Gd和Mg24Y5组成。 Ce加入到镁合金中,可以明显细化组织晶粒。黎文献等[4]研究了Ce对Mg-Al镁合金晶粒尺寸的影响,。在Mg-Al系AZ31合金中添加微量稀土元素Ce,可明显细化合金晶粒,当Ce的加入量为了0.8%时,晶粒细化效果最好,由未细化前的约300 u m下降到约20~40μm。Ce在镁及镁合金中的细化作用是由于稀途元素在凝固过程中固/液界面前沿富集而引起成分过冷,过冷区形成新的形核带而形成细等轴晶。凝固过程中溶质再分配造成固液界面前沿成分过冷度增大是稀土元素细化镁及镁合金的主要机理。此外,稀土在固/液界面前沿的富集使其起到阻碍α-Mg晶粒长大的作用,进一步促进了晶粒的细化。
Ce可提高镁合金的抗氧化燃烧性。赵洪金等[5]研究了稀土元素Ce对AZ91D镁合金燃点的影响:利用自行开发的温度采集系统,测试了加入少量稀土元素Ce的块状AZ91D镁合金及其熔体在加热过程中表面与心部的温度.时间曲线。随Ce含量的增加,氧化点与燃烧点均呈上升趋势。w(Ce)=1%时,氧化点与燃烧点的平均值较AZ91D的分别提高了33℃和61℃。
Ce可以改善镁合金的力学性能。陈芙蓉等[6]研究了Ce对AZ91D镁合金组织和力学性能的影响。Ce加入到镁合金组织后,细化合金组织起到细晶强化作用;使网状的β相细小并弥散分布于晶界上;同时在晶界形成弥散分布的Al4Ce化合物起到第二相强化作用,当Ce含量为0.69%时,含金的抗拉强度、屈服强度、伸长率及硬度分刺比AZ91D镁合金提高15.8%、8.7%、140%及15.7%,其综合力学性能达到最佳。
Ce能够改善镁合金的耐腐蚀性能。杨洁等[7]研究了Ce对AZ91镁合金微观组织及耐蚀性的影响,结果表明:Ce细化了合金的微观组织,使β—Mg17Al12相变得断续、弥散,成分分布更为均匀,生成了A14Ce相及Mg—Al—Mn—Ce—Fe的金属间化合物;稀土Ce使合金在3.5%NaCl溶液中的自腐蚀电位升高,与Al、O生成了不连续的保护性氧化膜,提高了合金的耐腐蚀性能;添加0.5%Ce时合金的耐蚀性最佳。 Z.L. Ning等研究了Nd对Mg–0.3Zn–0.32Zr 合金微观结构和力学性能的影响。
当合金中Nd的加入量由0.21% 逐渐增加至 2.65%时,合金的的晶粒尺寸由120μm减小至60μm,同时晶粒形态从六面体结构转变为类似玫瑰状结构。当Nd的加入量小于0.84% 时,Nd能够完全溶入镁基体中,铸锭中只有单相的α-Mg,当Nd的加入量超过1.62%,通过X射线衍射仪测试发现在晶界和晶界三角区有金属间化合物Mg12Nd生成。晶粒和晶界中的Mg12Nd相能够锁定晶界,减少晶界限滑移和位错滑移,能够明显改善镁合金高温下的抗拉强度,和屈服强度,同时伸长率稍有降低。
Li Mingzhao[8]等利用金相显微镜,SEM, EDS, XRD等手段研究了Nd对AZ31镁合金微观结构和力学性能。结果表明:在AZ31镁合金中加入微量的Nd能够在晶界和α-Mg相中生成金属间化合物Al2Nd 和 Mg12Nd ,Nd的吸收率高达95%,能够明显改善AZ31镁合金的微观结构和提高合金的力学性能。在AZ31镁合金中加入0.6wt%,抗拉强度达到245 MPa, 屈服强度为171 Mpa 延伸率为 9%。
侯志丹[9]研究了Nd对ZK60腐蚀性能的影响,研究表明ZK60-1%Nd 合金由α-Mg 基体和晶界的MgZn 相、MgZn2 相和Mg12Nd 相组成。晶界结构较为连续和紧实,晶界宽而明显,晶粒更为细小,大量带状或链状组织相互连接成网状,且晶界的Nd 与O 结合生成Nd2O3 钝化膜,Nd的加入可明显提高ZK60合金在3.5%NaCl水溶液中的耐蚀性。
Yan Jingli等[10]研究了Mg–2wt.%Nd镁合金的蠕变性能。在150至250?C,应力30至110 Mpa的条件下,在固溶强化和析出强化的作用下合金表现出良好的抗蠕变性能。在蠕变过程中有细小的沉淀物析出,这对限制位错的运动起到了重要作用。 Jie Yang等[11]研究了Gd对 Mg–4.5Zn合金微观组织和力学性能的影响。结果表明,随着Gd的加入,合金的晶粒尺寸逐渐细化,生成了Mg5Gd和 Mg3Gd2Zn3相,加入Gd后,合金的强度大大提高。当Gd的加入量为1.5%时,合金的强度最高,抗拉强度和屈服强度分别为231MPa 和113 Mpa。和未加入Gd前的Mg–4.5Zn合金相比,抗拉强度和屈服强度分别提高了22 MPa and 56Mpa。合金强化的主要和晶粒细化,Mg5Gd和Mg3Gd2Zn3相的强化作用以及Gd原子溶于镁基体的强化效果有关。
Gd对镁合金腐蚀性能的影响。王萍等[12]采用电化学方法研究了Gd含量对ZK60系镁合金在3.5%NaCI溶液中的腐蚀行为,并用金相显微镜、SEM观察了铸态显微组织及腐蚀形貌,对腐蚀产物进行了XRD分析。结果表明:稀土元素Gd可以细化合金晶粒,减少粗大共晶相MgZn的含量;在3.5%NaCI溶液中,腐蚀产物主要 Mg(OH)2;通过极化曲线测试,ZK60+1.6%Gd合金耐蚀性最好。在Cl作用下,腐蚀以点蚀为主,同时会形成以第二相MgZn和Mg5Gd为阴极,α-Mg为阳极的电偶腐蚀。 吴国华[13]等研究了稀土La对AZ91D镁合金在NaCl溶液中耐蚀性的影响,AZ9lD合金中加入1%La(质量分数)后,不但形成了条状的A111La3相和块状的Al8LaMn4相,而且在粗大p相(Mgl7All2)周围形成了许多细小的层片状β相,并使β相进一步网状化.这些细小的层片状p相明显阻碍了腐蚀的扩展,提高了AZ91D镁合金的耐蚀性.条状的Al11La3相和块状的Al8LaMn4相都属于阴极耐蚀相.其中Al11La3相由于较小的阴极面积,对加速其周围镁基体的腐蚀不起明显作用;而块状的Al8LaMn4相阴极面积较大,与基体构成微电偶腐蚀,加速了基体的腐蚀.
Jinghuai Zhang等[14]研究了富Ce稀土和La对Mg–4Al–0.4Mn镁合金的影响。研究表明:在Mg–4Al–4RE–0.4Mn (RE = Ce-rich mischmetal)合金中,沿着晶界有Al11RE3 andAl2RE两种相生成,而在Mg–4Al–4La–0.4Mn合金中的主要相为α-Mg 相和Al11La3相。Al11La3相占据着晶界的大部分区域,且有着复杂的形态。当用La代替富Ce稀土加入到Mg–4Al–0.4Mn镁合金中,改善了晶粒尺寸,并使晶界相分布一致性能,极大的提高Mg–4Al–0.4Mn镁合金的抗拉强度。在室温下,Mg–4Al–4La–0.4Mn的抗拉强度,屈服极限,延伸率分别为264 Mpa,146 Mpa,13%,优于Mg–4Al–4RE–0.4Mn的247Mpa, 140Mpa, 11%。Mg–4Al–4La–0.4Mn合金晶体附近范围内的微观结构的稳定性明显优于Mg–4Al–4RE–0.4Mn合金,其原因是Al11La3 的热力学稳定性优于Al11RE3。在蠕变测试中,Al11La3相能够有效阻碍晶界附近的晶界滑移和位错运动。在Mg–4Al–0.4Mn镁合金中加入La后的力学性能明显优于在合金中加入富Ce稀土。
包芯线属于稀土镁合金里的哪一类
包芯线属于稀土镁合金中的加强增强类。
稀土镁合金以轻质、高强、高耐腐蚀性和良好的耐高温性能等优异性能而受到广泛关注和应用。其中,包芯线作为一种常用的加强增强材料,主要通过增加合金的变形阻力和晶界的强化效应,提高稀土镁合金的强度、韧性和疲劳寿命等性能。
目前,市场上常见的包芯线主要分为Zr、Ca、Si等不同系列,其加强机理和应用领域也有所不同。
稀土在镁及镁合金中的应用
稀土元素在镁合金熔体中具有除氢、除氧、除硫、除铁、除夹杂物的作用,达到除气精炼、净化熔体的效果。
镁合金在熔炼过程中极易氧化燃烧,稀土是镁合金熔体的表面活性元素,能够在熔体表面形成致密的复合氧化物膜,有效阻止熔体和大气的接触,大大提高镁合金熔体起燃温度。
稀土与镁或其他合金化元素在合金凝固过程中形成稳定的金属间化合物,这些含稀土的金属间化合物一般具有高熔点、高热稳定性等特点,它们呈细小化合物粒子弥散分布于晶界和晶内,在高温下可以钉扎晶界,抑制晶界滑移,同时阻碍位错运动,强化合金基体。
时效沉淀强化作用 稀土元素在镁中所具有的较高固溶度随温度降低而降低,当处于高温下的单相固溶体快速冷却时,形成不稳定的过饱和固溶体,经过长时间的时效,则形成细小而弥散的析出沉淀相。析出相与位错之间交互作用,提高合金的强度。
如果你想要个好的网站了解这些信息的话,亿迈克思磁材市场emkex.cn和钕铁硼产业网都是不错的。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。